Abstract
Thousands of per- and polyfluoroalkyl substances (PFAS) are on the global market, while only a minor proportion is monitored regularly in the environment. Wastewater treatment plants (WWTPs) have been suggested to be a point source for PFAS to the environment due to emission of effluent and sludge. In this study, 81 PFAS including two rarely studied perfluoroalkyl sulfonamide-based (FASA) copolymers were analyzed in sludge samples to understand the usage of PFAS in the society. Sludge samples (n = 28) were collected at four WWTPs in Sweden between 2004 and 2017. The total levels of 79 measured PFAS were between 50 and 1124 ng/g d.w. All sludge samples showed detectable levels of both C8- and C4-FASA-based copolymers. The concentrations of the FASA-based copolymers were proposed to be reported in fluorinated side-chain equivalents (FSC eq.), in order to compare the levels of the copolymers with the other neutral and anionic PFAS, as no authentic standards were available. The concentrations of the FASA-based copolymers in sludge were between 1.4 and 22 ng FSC eq./g d.w. A general predomination of precursor and intermediate compounds was observed. A lower contribution of perfluoroalkyl carboxylic acids was noted for the WWTPs more influenced by domestic emission when compared with more influenced by industrial emission. An overall declining trend in the total PFAS concentration was seen between the years 2004 and 2017. The present study observed a shift from the C8-based chemistry toward shorter chain lengths, included a declining trend for C8-FASA-based copolymer over the entire study period. These findings further demonstrate the occurrence of side-chain fluorinated copolymers in Sweden and that sludge is a useful matrix to reflect the usage of PFAS in society and the potential for environmental exposure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.