Abstract

Peptidoglycan-associated lipoprotein (Pal) is a potential vaccine candidate from Haemophilus influenzae that is highly conserved in Gram-negative bacteria and anchored to the outer membrane through an N-terminal lipid attachment. Pal stabilizes the outer membrane by providing a noncovalent link to the peptidoglycan (PG) layer through a periplasmic domain. Using NMR spectroscopy, we determined the three-dimensional structure of a complex between the periplasmic domain of Pal and a biosynthetic peptidoglycan precursor (PG-P), UDP-N-acetylmuramyl-L-Ala-alpha-d-Glu-m-Dap-D-Ala-d-Ala (m-Dap is meso-diaminopimelate). Pal has a binding pocket lined with conserved surface residues that interacts exclusively with the peptide portion of the ligand. The m-Dap residue, which is mainly found in the cell walls of Gram-negative bacteria, is sequestered in this pocket and plays an important role by forming hydrogen bond and hydrophobic contacts to Pal. The structure provides insight into the mode of cell wall recognition for a broad class of Gram-negative membrane proteins, including OmpA and MotB, which have peptidoglycan-binding domains homologous to that of Pal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.