Abstract

Point accumulation for imaging in nanoscale topography (PAINT) is a single-molecule technique for super-resolution microscopy, which uses exchangeable single stranded DNA oligos or peptide-pairs to create blinking phenomenon and achieves ≈5-25 nanometer resolution. Here, it is shown that by transfecting the protein-of-interest with a docker-coil, rather than by adding the docker externally-as is the norm when using DNA tethers or antibodies as dockers-similar localization can be achieved, ≈10nm. However, using a transfected docker has several experimental advances and simplifications. Most importantly, it allows Peptide-PAINT to be applied to transfected live cells for imaging surface proteins in mammalian cells and neurons under physiological conditions. The enhanced resolution of Peptide-PAINT is also shown for organelles in fixed cells to unravel structural details including ≈40-nm and ≈60-nm axial repeats in vimentin filaments in the cytoplasm, and fiber shapes of sub-100-nm histone-rich regions in the nucleus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.