Abstract

Development of a peptide retention prediction model in reversed-phase chromatography is reported for acetylated peptides – both N-terminal (α-) and side chain of Lys (ε-amine) residues. Large-scale proteomic 2D LC-MS analyses of acetylated/non-acetylated tryptic digest of whole human cell lysate have been used to assemble representative retention data sets of 25,000+ modified/non-modified pairs. This allowed elucidating chromatographic behaviour of modified peptides in three different separation modes: high pH reversed-phase, HILIC separation on amide phase (first dimension of 2D) and reversed-phase separation with formic acid as ion-pairing modifier in the second dimension. On average, N-terminal acetylation increases peptide RP retention at acidic pH by 5 Hydrophobicity Index units (% acetonitrile). Acetylation of first lysine adds another 4.1%. The magnitude of the retention shift varies greatly depending on the number of modified amines, peptide length, and N-terminal peptide sequence. Large retention shifts have been observed for peptides with hydrophobic N-termini and specifically peptides carrying sequences characteristic for amphipathic helical structures – all in complete agreement with major sequence-specific features of RP retention mechanism. The utility of the modified Sequence Specific Retention Calculator model has been verified for the in-vivo N-terminally acetylated peptides detected by 2D LC-MS/MS analysis of a yeast tryptic digest. The effect of N-terminal acetylation was also evaluated for six different HILIC columns, strong cation- and strong anion exchange separations using previously acquired 2D LC-MS/MS data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call