Abstract

AbstractWe have prepared nanocomposite films comprising of 3‐glycidoxypropyltrimethoxysilane (GOPS) and iron‐oxide (Fe3O4) onto indium‐tin‐oxide (ITO) glass plate for covalent immobilization of 21‐mer peptide nucleic acid (PNA). These films have been characterized using contact angle, atomic force microscopy (AFM), electrochemical techniques. The electrochemical response of the GOPS/ITO and Fe3O4‐GOPS/ITO electrodes has been investigated by hybridization with complementary, non‐complementary and one‐base mismatch using methylene blue as electrochemical indicator. The PNA/Fe3O4‐GOPS/ITO bioelectrode exhibits improved specificity and detection limit (0.1 fM) as compared to that of the PNA‐GOPS/ITO bioelectrode (0.1 pM). This PNA/Fe3O4‐GOPS/ITO electrode can be utilized for detection of hybridization with the complementary sequence in sonicated M. tuberculosis genomic DNA within 90 s of hybridization time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call