Abstract

Surface modifications were performed on the indium tin oxide (ITO) substrates for polymer light-emitting devices, using the different treatment methods including solvent cleaning, hydrochloric acid treatment and oxygen plasma. The influence of modifications on the surface properties of ITO electrodes were investigated by X-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), contact angle, and four-point probe. The surface energies of the ITO substrates were also calculated from the measured contact angles. Experimental results demonstrate that the surface properties of the ITO substrates strongly depend on the modification methods, and oxygen plasma more effectively improves the ITO surface properties compared with the other treatments. Furthermore, the polymer light-emitting electrochemical cells (LECs) with the differently treated ITO substrates as device electrodes were fabricated and characterized. It is observed that the surface modifications on ITO electrodes have a certain degree of influence upon the injection current, luminance and efficiency, but hardly upon the turn-on voltages of current injection and light emission which are close to the measured energy gap of electroluminescent polymer. Oxygen plasma treatment on the ITO electrode yields the better performance of the LECs, due to the improvement of interface formation and electrical contact of the ITO electrode with the polymer blend in the LECs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call