Abstract

Synthetic oligopeptides have emerged as a promising class of targeting ligands, providing a variety of choices for the construction of conjugates for desired ligand functionality. To explore the potential of short peptides as ligands for targeted delivery of macromolecular therapeutics for colorectal cancer (CRC), fluorescently labelled HPMA copolymers—bearing either G3-C12 or GE11 for targeting galectin-3 and epidermal growth factor receptor (EGFR), respectively—were synthesised and the mechanisms of their internalisation and subcellular fate in CRC cells were studied. The targetability of the G3-C12 bearing copolymers towards galectin-3 was further compared to that of galactose-containing copolymers. The resulting G3-C12-bearing conjugate actively and selectively targets CRC tumour cells over-expressing galectin-3 and exhibits superior targetability to galectin-3 when compared to the galactose-bearing copolymer. GE11 copolymer conjugate binds specifically and efficiently to EGFR over-expressing cells, thus mediating internalisation to a significantly higher extent relative the copolymer conjugated to a scrambled sequence peptide. We further incorporated doxorubicin (DOX) into GE11 bearing copolymer via an acid-labile hydrazone bond. The GE11-DOX copolymer conjugate demonstrated higher cytotoxicity toward EGFR over-expressing cells relative to the control non-targeted DOX conjugate. Altogether, our results show a proof of principle for the selective delivery of DOX to the target CRC cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call