Abstract

Recent advances in mass spectrometry-based peptidomics have catalyzed the identification and quantification of thousands of endogenous peptides across diverse biological systems. However, the vast peptidomic landscape generated by proteolytic processing poses several challenges for downstream analyses and limits the comparability of clinical samples. Here, we present an algorithm that aggregates peptides into peptide clusters, reducing the dimensionality of peptidomics data, improving the definition of protease cut sites, enhancing inter-sample comparability, and enabling the implementation of large-scale data analysis methods akin to those employed in other omics fields. We showcase the algorithm by performing large-scale quantitative analysis of wound fluid peptidomes of highly defined porcine wound infections and human clinical non-healing wounds. This revealed signature phenotype-specific peptide regions and proteolytic activity at the earliest stages of bacterial colonization. We validated the method on the urinary peptidome of type 1 diabetics which revealed potential subgroups and improved classification accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.