Abstract

The efficient targeted delivery of nucleic acids in vivo provides some of the greatest challenges to the development of genetic therapies. Giant unilamellar lipid vesicles (GUVs) have been used mainly as cell and tissue mimics and are instrumental in studying lipid bilayers and interactions. Here, the GUVs have been modified into smaller nanovesicles. We have then developed novel nanovesicle complexes comprising self-assembling mixtures of the nanovesicles, plasmid DNA or siRNA, and targeting peptide ligands. Their biophysical properties were studied and their transfection efficiency was investigated. They transfected cells efficiently without any associated cytotoxicity and with targeting specificity, and in vivo they resulted in very high and tumour-specific uptake and in addition, efficiently transfected the lung. The peptide-targeted nanovesicle complexes allow for the specific targeted enhancement of nucleic acid delivery with improved biosafety over liposomal formulations and represent a promising tool to improve our arsenal of safe, non-viral vectors to deliver therapeutic cargos in a variety of disorders.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call