Abstract

AbstractEnamel remineralization, which attempts to generate a mineral layer structurally similar to native enamel and restore its mechanical properties, remains a significant challenge. Here, rationally designed peptide amphiphile (PA) molecules bind to amorphous calcium phosphate (ACP) particles via electrostatic interactions, imparting anisotropic properties that drive PA‐modified ACP to form spindle‐shaped aggregates. Furthermore, some residual PA molecules may further regulate crystallization and facilitate the formation of well‐aligned hydroxyapatite bundles. Additionally, the involvement of PA can mediate the ordered deposition and fusion of ACP on the enamel surface, and construct the crystalline‐amorphous mineralization front with a continuous structure. This mineralization front ensures epitaxially oriented growth of enamel crystals and achieves a structurally ordered mineral layer similar to that of native enamel, while the mechanical performance is effectively restored. More significantly, the thickness of the newly formed mineral layer can be augmented through cyclic remineralization, benefitting the design of products intended for practical enamel repair.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.