Abstract

Molecular mechanics (MM) method followed by molecular dynamics (MD) simulation was carried out to investigate the stability of an aggregate formed by self-assembling of peptide amphiphile (PA) molecules. The MM + MD simulation confirms that the cylindrical shaped aggregate is very stable. The analysis showed that the remarkable stability of the aggregate was partly due to various intermolecular hydrogen-bond interactions between polar groups of PA molecules. The hydrophobic alkyl tails of PA molecules are packed loosely inside the interior of the aggregates. The packing of alkyl tails contribute further stability of the PA aggregate. Our simulations reproduce qualitatively experimental observations and support the fact that PA molecules are self-assembled within closed intermolecular distance to favor the forming of disulfide bonds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call