Abstract

Neuroendocrine tumors (NETs) comprise a heterogeneous group of malignancies that express neuropeptides as synaptophysin, chromogranin A (CgA), and specific neuronal enolase (NSE), among others. Vasopressin (AVP) is a neuropeptide with an endocrine, paracrine, and autocrine effect in normal and pathological tissues. AVP receptors are present in human lung, breast, pancreatic, colorectal, and gastrointestinal tumors. While AVP V1 receptors are associated with stimulation of cellular proliferation, AVP V2 receptor (V2r) is related to antiproliferative effects. Desmopressin (dDAVP) is a synthetic analog of AVP that acts as a selective agonist for the V2r, which shows antitumor properties in breast and colorectal cancer models. Recently, we developed a derivative of dDAVP named [V4Q5]dDAVP, which presents higher antitumor effects in a breast cancer model compared to the parental compound. The goal of present work was to explore the antitumor properties of the V2r agonist dDAVP and its novel analog [V4Q5]dDAVP on aggressive human lung (NCI-H82) and prostate cancer (PC-3) cell lines with neuroendocrine (NE) characteristics. We study the presence of specific NE markers (CgA and NSE) and V2r expression in NCI-H82 and PC-3. Both cell lines express high levels of NE markers NSE and CgA but then incubation with dDAVP diminished expression levels of both markers. DDAVP and [V4Q5]dDAVP significantly reduced proliferation, doubling time, and migration in both tumor cell cultures. [V4Q5]dDAVP analog showed a higher cytostatic effect than dDAVP, on cellular proliferation in the NCI-H82 cell line. Silencing of V2r using small interfering RNA significantly attenuated the inhibitory effects of [V4Q5]dDAVP on NCI-H82 cell proliferation. We, preliminarily, explored the in vivo effect of dDAVP and [V4Q5]dDAVP on NCI-H82 small cell lung cancer xenografts. Treated tumors (0.3 μg kg−1, thrice a week) grew slower in comparison to vehicle-treated animals. In this work, we demonstrated that the specific agonists of V2r, dDAVP, and [V4Q5]dDAVP displays antitumor capacity on different human models of lung and prostate cancers with NE features, showing their potential therapeutic benefits in the treatment of these aggressive tumors.

Highlights

  • Neuroendocrine tumors (NETs) comprise a diverse group of malignancies that present a broad range of morphological, functional, and behavioral characteristics

  • MDA-MB-231, a cell line known to display among others. Vasopressin (AVP) membrane receptors, was used as a positive control of V2 receptor (V2r) expression [32]

  • The participation of neuropeptides in tumor growth, in NETs, has always been object of study with the aim of discovering mechanisms involved in cancer progression and new therapeutic targets

Read more

Summary

Introduction

Neuroendocrine tumors (NETs) comprise a diverse group of malignancies that present a broad range of morphological, functional, and behavioral characteristics. Neuroendocrine tumors growth is mainly regulated by autocrine and paracrine signaling through neuropeptides, peptide hormones, and bioamines with defined physiologic actions, and it has been widely reported in lung, gastric, colorectal, pancreatic, and prostatic cancer [2, 3]. These signaling pathways depend on the expression of specific receptors on tumor cells. Proteins expressed by these tumors are the synaptophysin, the chromogranin A (CgA), and the specific neuronal enolase (NSE) [4, 5]. NSE is currently the most reliable tumor marker in diagnosis, prognosis, and follow-up of small cell lung cancer (SCLC) [7,8,9,10]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call