Abstract
The limited ionic conductivity at room temperature and the constrained electrochemical window of poly(ethylene oxide) (PEO) pose significant obstacles that hinder its broader utilization in high-energy-density lithium metal batteries. The garnet-type material Li6.4 La3 Zr1.4 Ta0.6 O12 (LLZTO) is recognized as a highly promising active filler for enhancing the performance of PEO-based solid polymer electrolytes (SPEs). However, its performance is still limited by its high interfacial resistance. In this study, a novel hybrid filler-designed SPE is employed to achieve excellent electrochemical performance for both the lithium metal anode and the LiFePO4 cathode. The solid composite membrane containing hybrid fillers achieves a maximum ionic conductivity of 1.9 × 10-4 S cm-1 and a Li+ transference number of 0.67 at 40°C, respectively. Additionally, the Li/Li symmetric cells demonstrate a smooth and stable process for 2000 h at a current density of 0.1mA cm-2 . Furthermore, the LiFePO4 /Li battery delivers a high-rate capacity of 159.2 mAh g-1 at 1 C, along with a capacity retention of 95.2% after 400 cycles. These results validate that employing a composite of both active and inactive fillers is an effective strategy for achieving superior performance in all-solid-state lithium metal batteries (ASSLMBs).
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have