Abstract

We consider hidden charm pentaquarks as hadroquarkonium states in a QCD inspired approach. Pentaquarks arise naturally as bound states of quarkonia excitations and ordinary baryons. The LHCb P_c(4450) pentaquark is interpreted as a psi '-nucleon bound state with spin-parity J^P=3/2^-. The partial decay width varGamma (P_c(4450)rightarrow J/psi +N)approx 11 MeV is calculated and turned out to be in agreement with the experimental data for P_c(4450). The P_c(4450) pentaquark is predicted to be a member of one of the two almost degenerate hidden-charm baryon octets with spin-parities J^{P}=1/2^-,3/2^-. The masses and decay widths of the octet pentaquarks are calculated. The widths are small and comparable with the width of the P_c(4450) pentaquark, and the masses of the octet pentaquarks satisfy the Gell-Mann–Okubo relation. Interpretation of pentaquarks as loosely bound varSigma _cbar{D}^* and varSigma _c^*bar{D}^* deuteronlike states is also considered. We determine quantum numbers of these bound states and calculate their masses in the one-pion exchange scenario. The hadroquarkonium and molecular approaches to exotic hadrons are compared and the relative advantages and drawbacks of each approach are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.