Abstract

High-performance HCHO sensors are of great importance in various application fields such as indoor air quality assessments. Herein, bimetallic Ag-Pt nanoparticles are synthesized as high-performance catalysts for ZnO-based gas sensors. Spherical aberration (Cs)-corrected transmission electron microscopy images with atomic resolution clearly indicate that the prepared nanoparticles exhibit a novel Ag@Pt core-shell nanostructure with a pentagram shape. For high-performance HCHO sensor construction, integrated micro-electrodes are first fabricated with the microelectromechanical system (MEMS) technology. Then, the hydrothermal route is used to self-assemble well-aligned ZnO nanowire arrays onto the sensing microregion. After that, the pentagram-shaped Ag@Pt nanoparticles are loaded onto the surface of ZnO nanowires with the inkjet printing technique to form MEMS sensors with Ag@Pt@ZnO as the sensing material. The thoroughly sensing experiments indicate that the Ag@Pt nanoparticles exhibit satisfied catalytic activation to HCHO molecules. The experimental observed detection limit of our sensor to HCHO reaches the parts per billion level. To elucidate the HCHO-sensing mechanism, the online mass spectrum (online MS) is utilized to analyze the components of exhaust gas stream of HCHO flowing through the Ag@Pt@ZnO material. The online MS indicates that with the Ag@Pt catalyst, HCHO molecules are partially oxidized to HCOOH molecules at low temperatures and are completely oxidized to CO2 molecules at high temperatures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.