Abstract

ZnO nanowires were synthesized via a low-temperature (90°C) hydrothermal route on glass substrates pre-deposited with a ZnO seed layer. The influence of different annealing ambient conditions (air or vacuum) on the structure, photoluminescence and photocatalytic activity of ZnO nanowires was investigated by Raman spectroscopy, X-ray diffraction, photoluminescence (PL) and photochemical reactions etc. It was found that there existed graphitic carbons on the surfaces of ZnO nanowires after vacuum annealing. The PL intensity of ZnO nanowires with the graphitic carbons was significantly reduced while the photocatalytic activity was enhanced, indicating that the graphitic carbons could decrease the recombination probability of photo-induced carriers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.