Abstract

The complex Pt(SnBu(t)3)2(CNBu(t))2(H)2, 1, was obtained from the reaction of Pt(COD)2 and Bu(t)3SnH, followed by addition of CNBu(t). The two hydride ligands in 1 can be eliminated, both in solution and in the solid state, to yield Pt(SnBu(t)3)2(CNBu(t))2, 2. Addition of hydrogen to 2 at room temperature in solution and in the solid state regenerates 1. Complex 2 catalyzes H2-D2 exchange in solution to give HD. The proposed mechanism of exchange involves reductive elimination of Bu(t)3SnH from 1 to afford vacant sites on the Pt center, thus facilitating the exchange process. This is supported by isolation and characterization of Pt(SnMes3)(SnBu(t)3)(CNBu(t))2, 3, when the addition of H2 to 2 was carried out in the presence of free ligand Mes3SnH (Mes = 2,4,6-Me3C6H2). Complex Pt(SnMes3)2(CNBu(t))2, 5, can be prepared from the reaction of Pt(COD)2 with Mes3SnH and CNBu(t). The exchange reaction of 2 with Ph3SnH gave Pt(SnPh3)3(CNBu(t))2(H), 6, wherein both SnBu(t)3 ligands are replaced by SnPh3. Complex 6 decomposes in air to form square planar Pt(SnPh3)2(CNBu(t))2, 7. The complex Pt(SnPr(i)3)2(CNBu(t))2, 8, was also prepared. Out of the four analogous complexes Pt(SnR3)2(CNBu(t))2 (R = Bu(t), Mes, Ph, or Pr(i)), only the Bu(t) analogue does both H2 activation and H2-D2 exchange. This is due to steric effects imparted by the bulky Bu(t) groups that distort the geometry of the complex considerably from planarity. The reaction of Pt(COD)2 with Bu(t)3SnH and CO gas afforded trans-Pt(SnBu(t)3)2(CO)2, 9. Compound 9 can be converted to 2 by replacement of the CO ligands with CNBu(t) via the intermediate Pt(SnBu(t)3)2(CNBu(t))2(CO), 10.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call