Abstract

Novel nanostructured platforms based on Pencil Graphite Electrodes (PGEs), modified with pyrene carboxylic acid (PCA) functionalized Reduced Graphene Oxide (rGO), and then decorated by chronoamperometry electrodeposition of MoS2 nanoroses (NRs) (MoS2NRs/PCA-rGO/PGEs) were manufactured for the electrocatalytic detection of hydrazine (N2H4) and 4-nitrophenol, pollutants highly hazardous for environment and human health. The surface morphology and chemistry of the MoS2NRs/PCA-rGO/PGEs were characterized by scanning electron microscopy (SEM), Raman, and X-ray photoelectron spectroscopy (XPS), assessing the coating of the PCA-rGO/PGEs by dense multilayers of NRs. N2H4 and 4-nitrophenol have been monitored by Differential Pulse Voltammetry (DPV), and the MoS2NRs/PCA-rGO/PGEs electroanalytical properties have been compared to the PGEs, as neat and modified by PCA-rGO. The MoS2NRs/PCA-rGO/PGEs demonstrated a higher electrochemical and electrocatalytic activity, due to their high surface area and conductivity, and very fast heterogeneous electron transfer kinetics at the interphase with the electrolyte. LODs lower than the U.S. EPA recommended concentration values in drinking water, namely 9.3 nM and 13.3 nM, were estimated for N2H4 and 4-nitrophenol, respectively and the MoS2NRs/PCA-rGO/PGEs showed good repeatability, reproducibility, storage stability, and selectivity. The effectiveness of the nanoplatforms for monitoring N2H4 and 4-nitrophenol in tap, river, and wastewater was addressed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call