Abstract

Autoantibody-induced cellular signaling mechanisms contribute to the pathogenesis of autoimmune blistering skin disease pemphigus vulgaris (PV). Recently, it was proposed that epidermal growth factor receptor (EGFR) might be involved in PV signaling pathways. In this study, we investigated the role of EGFR by comparing the effects of epidermal growth factor (EGF) and PV-IgG on the immortalized human keratinocyte cell line HaCaT, and primary normal human keratinocytes. In contrast to EGF treatment, PV-IgG neither caused the canonical activation of EGFR via phosphorylation at tyrosine (Y)1173 followed by internalization of EGFR nor the phosphorylation of the EGFR at the c-Src-dependent site Y845. Nevertheless, both PV-IgG and EGF led to cell dissociation and cytokeratin retraction in keratinocyte monolayers. Moreover, the effects of EGF were blocked by inhibition of EGFR and c-Src whereas the effects of PV-IgG were independent of both signaling pathways. Similarly, laser tweezer experiments revealed that impaired bead binding of epidermal cadherins desmoglein (Dsg) 3 and Dsg 1 in response to PV-IgG was not affected by inhibition of either EGFR or c-Src. In contrast, EGF treatment did not interfere with Dsg bead binding. Taken together, our study indicates that the loss of Dsg-mediated adhesion and keratinocyte dissociation in pemphigus is independent of EGFR. Moreover, the mechanisms by which both EGF and PV-IgG lead to keratinocyte dissociation and cytokeratin retraction appear to be different.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call