Abstract
The Ordinary Least Squares (OLS) is one of the most commonly used method to estimate linear regression parameters. If multicollinearity is exist within predictor variables especially coupled with the outliers, then regression analysis with OLS is no longer used. One method that can be used to solve a multicollinearity and outliers problems is Ridge Robust-MM Regression. Ridge Robust-MM Regression is a modification of the Ridge Regression method based on the MM-estimator of Robust Regression. The case study in this research is AKB in Central Java 2017 influenced by population dencity, the precentage of households behaving in a clean and healthy life, the number of low-weighted baby born, the number of babies who are given exclusive breastfeeding, the number of babies that receiving a neonatal visit once, and the number of babies who get health services. The result of estimation using OLS show that there is violation of multicollinearity and also the presence of outliers. Applied ridge robust-MM regression to case study proves ridge robust regression can improve parameter estimation. Based on t test at 5% significance level most of predictor variables have significant effect to variable AKB. The influence value of predictor variables to AKB is 47.68% and MSE value is 0.01538.Keywords: Ordinary Least Squares (OLS), Multicollinearity, Outliers, RidgeRegression, Robust Regression, AKB.
Published Version (
Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have