Abstract
In the cause of working out the challenge of remaining life prediction (RUL) of proton exchange membrane fuel cell (PEMFC) under dynamic operating conditions, this article proposes a PEMFC RUL forecast technique based on the sparse autoencoder (SAE) and deep neural network (DNN). The method extracts the data set from the original experimental data at intervals periods of one hour to realize datum reconstruction. The Gaussian-weighted moving average filter is used to smooth noisy data (voltage and current). The smoothed filtered power output signal of the stack is extracted as an aging indicator. The SAE is used to extract the prediction features automatically, and the DNN is applied to realize the RUL prediction. The proposed method is experimentally verified using 127 369 experimental data. The effectiveness of the novel method is verified by three different training sets and test set configurations. The experimental results reveal that the novel approach has the best prediction effectiveness when the training set length is set to 500 h. At this point, the prediction accuracy can reach 99.68%. The mean absolute error (MAE), mean square error (MSE), and root-mean-square error (RMSE) are minimum values, which are 0.2035, 0.1121, and 0.3348, respectively. The superiority and effectiveness of the proposed approach are further validated by comparison with the K-nearest neighbor and support vector regression machine. The proposed approach can be appropriate for the prediction of the RUL of PEMFC under dynamic conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Transportation Electrification
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.