Abstract

ABSTRACT Proton exchange membrane fuel cell (PEMFC) is considered as one of the most promising green energy devices. Although fruitful results can be available for the remaining useful life (RUL) prediction of PEMFC, stochastic uncertainties have never been considered. To tackle this problem, a hybrid method is proposed in this paper. Wiener process with temporal uncertainty and individual uncertainty is adopted to model the degradation of the state of health (SOH), which is then estimated from monitoring voltage with measurement noise using the unscented Kalman filter (UKF), where unknown filtering and model parameters are jointly identified by expectation-maximization (EM) algorithm and Rauch-Tung-Striebel (RTS) smoother. Finally, gated recurrent unit (GRU) network is employed to realize the RUL prediction with the prediction uncertainty quantified by the Bayesian variational inference technology. The proposed method is verified on the experimental data. Results indicate that smaller mean absolute percentage error (MAPE), root mean square error (RMSE), and mean absolute error (MAE) values can be obtained compared with other methods. When 60% data are used for prediction, the proposed method can achieve a RUL prediction accuracy with 1.63% and 2.17% relative errors under static and dynamic conditions, respectively, which illustrates the feasibility and superiority of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.