Abstract

Recently we developed a novel type of membrane, based on polyethylene vinyl alcohol (EVAL), for biomedical applications. To improve the physical and biological performance of this membrane, polyethylenimine (PEI) that has been widely used as a gene transfer vector was chosen to blend with EVAL in this study. The properties and in vitro neuronal interaction of the blend membranes were investigated. Scanning electron microscopic observations show that the membranes exhibited increasingly smoother surface morphologies as the PEI content increased. Differential scanning calorimetric analysis demonstrated that EVAL was compatible with PEI at the microscopic level and the crystallinity of EVAL membrane was reduced by amorphous PEI. The surface nitrogen to carbon ratios, surface positive charges, surface hydrophilicity and surface protein adsorption were found to increase with increasing PEI content in the blend membranes as evidenced by the evidences from electron spectroscopy for chemical analysis as well as measurements of zeta potential, water contact angle, and serum protein adsorption respectively. From the morphology and viability of neurons cultured on the surfaces, it was observed that the neurons adhered, spread, grew and differentiated more onto the moderately hydrophilic PEI-containing membranes than onto the unmodified and hydrophobic EVAL. These PEI/EVAL blend membranes, which displayed high compatibility, thermal stability, moderate hydrophilicity, improved serum protein adsorption and enhanced neuronal interaction, may offer the potential to improve the healing and axonal regeneration of injured neuronal tissues.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.