Abstract

In this work, the properties of poly(vinyl alcohol) (PVA) and PVA/chitosan blended membranes were investigated by scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and electron spectroscopy for chemical analysis (ESCA). The SEM photographs show the PVA/chitosan blended membrane undergoes dramatic changes on the surface and bulk structure during the membrane formation. The DSC analysis shows that PVA and chitosan are not very compatible in the PVA/chitosan blended membrane, whereas the combination of two polymer chains of constitutionally different features is revealed. In addition, the surface of the PVA/chitosan blended membrane is enriched with nitrogen atoms at the ESCA analysis. These reflect the PVA membrane can be modified by blending with chitosan that in turn may affect the biocompatibility of the blended membrane. Therefore, adhesion and growth of fibroblasts on the PVA as well as PVA/chitosan blended membranes were investigated. Cell morphologies on the membranes were examined by SEM and cell viability was studied using MTT assay. It was observed that the PVA/chitosan blended membrane was more favorable for the cell culture than the pure PVA membrane. Cells cultured on the PVA/chitosan blended membrane had good spreading, cytoplasm webbing and flattening and were more compacting than on the pure PVA membrane. Consequently, the PVA/chitosan blended membrane may spatially mediate cellular response that can promote cell attachment and growth, indicating the PVA/chitosan blended membrane should be useful as a biomaterial for cell culture.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.