Abstract

Osteoporosis is a condition of bone loss due to excessive osteoclastic activity. Several protein factors, such as receptor activator of nuclear factor kappa-B (RANK), receptor activator of nuclear factor kappa-B ligand (RANKL), osteoprotegerin (OPG), have been identified that are important in the pathogenesis of osteoporosis. RANKL binds to RANK and activates the NF-κB pathway by interaction of its cytoplasmic domain with an intracellular adapter protein, TNF receptor associated factors 6 (TRAF 6). This interaction can be inhibited by cell-permeable peptides that prevent RANK-TRAF 6 interaction. However, similar to the peptides/proteins used in clinical setting, the effective application of this TRAF 6 Inhibitory peptide as a therapeutic agent is marred by several limitations for instance short half-life, rapid renal clearance and immunogenicity. In the present study, we have developed PEGylated TRAF 6 Inhibitory peptide by conjugating TRAF 6 Inhibitory peptide to linear PEG backbone that exhibits longer bioavailability in plasma in the animal model. Besides, it has an enhanced uptake at its site of action, i.e., bone marrow.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.