Abstract

APEGylatedcurcumin (PCU) loaded electrospuns based on poly(ε-caprolactone) (PCL) andpolyvinyl alcohol (PVA) were fabricated for wound dressing applications. The main reason for this wound dressing design is antibacterialactivity enhancement, and wound exudates management. PEGylation increases curcuminsantibacterial properties and PVA can help exudates management. For optimal wound dressing, first, response surface methodology (RSM) was applied to optimize the electrospinning parameters to achieve appropriate nanofibrous mats. Then a three-layer electrospun was designed by considering the water absorbability, PCU release profile as well as antibacterial and biocompatibility of the final wound dressing. The burst release in controlled release systems could be evaluated for prevention of the higher initial drug release and control the effective life time. The PCU release results illustrated that the bead knot plays a positive role in controlling the release profile andby increase in the number of beads per unit area from 3000 to 9000mm-2,the PCU burst release will be reduced; Also in vitro studies show that optimized three-layer dressing based on PCL/PVA/PCU can support water vapour transmission rate in optimal range and also absorb more than three times exudates in comparison with mono-layerdressing. Antibacterial tests show that the electrospun wound dressing containing 5% PCU exhibits100% antibacterial activityas well as cell viability level within an acceptable range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.