Abstract

Artificial peroxidases have garnered a lot of attention owing to their tremendous superiority over their natural counterparts. Here, NiMn2O4 nanoparticles have been successfully prepared through PEG assisted hydrothermal method. The varied PEG concentrations significantly altered the morphology and particle size of the synthesizedmaterials. We demonstrate the improved peroxide-like assay of different NiMn2O4 nanoparticles for the first time. Among them, Ni4 nanoparticles exhibit good peroxidase-like activity by generating the oxidation of chromogenic substrate 3, 3′, 5, 5′-tetramethylbenzidine (TMB) in the presence of H2O2 and a blue color charge transfer product with an absorption maximum is positioned at 652 nm. These observations led to the development of a method for assessingH2O2 that can be read visually and photometrically. The Ni4 nanoparticles show enhanced kinetics compared to the natural enzyme horse radish peroxidase (HRP) with a lower Km (0.168 mM) value. Additionally, this Ni4 nanosphere applies as a visible light photocatalyst for the degradation of methylene blue (MB) and rhodamine B (Rh B) dyes under visible-light irradiation. Under optimized conditions, the degradationrates of MB and Rh B are 68 and 80.7 %, respectively, after 210 min, and recyclable efficiency is about 99 % for Rh B photocatalytic degradation in the first test and 98 % for five cycles, and about 98 % for MB photocatalytic degradation in the first test and 97 % for five cycles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call