Abstract

Significant improvement of effective and low-cost decolorization and disinfecting technologies is required to address the problems created by dyes and dangerous microorganisms from water and wastewaters. This article expresses the degradation of methylene blue (MB), Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) as gram negative and positive bacteria via a chitosan/AgCl/ZnO (CS/AgCl/ZnO) nanocomposite hydrogel beads system as a photocatalyst under visible light irradiation. The techniques such as FT-IR, SEM, EDAX, TGA, and XRD were applied to recognize the synthesized beads. Decolorization and disinfection experimental results revealed that the hydrogel beads system effectively degrade MB and bacteria. Also, the effects of the initial amount of catalysts, pH, coions and initial concentration of dye on the photocatalytic decolorization were investigated. Moreover, kinetics analysis indicates that the photocatalytic degradation rate of MB and bacteria can be described by Langmuir–Hinshelwood (L–H) and Weibull inactivation models, respectively. We provide a reusable and recoverable effective organic/inorganic photocatalyst in the form of beads that could solve the disadvantages of powder photocatalytic, without reducing the efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.