Abstract

Biodegradable macromolecular Gd(III) complexes, Gd-DTPA cystine copolymers (GDCP), were grafted with PEG of different sizes to modify the physicochemical properties and in vivo MRI contrast enhancement of the agents and to study the effect of PEG chain length on these properties. Three new PEG-grafted biodegradable macromolecular gadolinium(III) complexes were synthesized and characterized as blood pool MRI contrast agents. One of three different lengths of MPEG-NH(2) (MW = 550, 1000, and 2000) was grafted to the backbone of GDCP to yield PEG(n)()-g-poly(GdDTPA-co-l-cystine), PEG(n)()-GDCP. The PEG chain length did not dramatically alter the T(1) relaxivity, r(1), of the modified agents. The MRI enhancement profile of PEG(n)()-GDCP with different PEG sizes was significantly different in mice with respect to both signal intensity and clearance profiles. PEG(2000)-GDCP showed more prominent enhancement in the blood pool for a longer period of time than either PEG(1000)-GDCP or PEG(550)-GDCP. In the kidney, PEG(2000)-GDCP had less enhancement at 2 min than PEG(1000)-GDCP, but both PEG(550)-GDCP and PEG(1000)-GDCP showed a more pronounced signal decay thereafter. The three agents behaved similarly in the liver, as compared to that in the heart. All three agents showed little enhancement in the muscle. Chemical grafting with PEG of different chain lengths is an effective approach to modify the physiochemistry and in vivo contrast enhancement dynamics of the biodegradable macromolecular contrast agents. The novel agents are promising for further clinical development for cardiovascular and cancer MR imaging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call