Abstract

Mitochondrial disorders are an increasingly recognized cause of heart dysfunction, with the primary manifestations being cardiomyopathy and conduction defects. This review focuses on the complex genetics of mitochondrial disease and recently discovered conditions that affect mitochondrial function. Next-generation sequencing techniques, especially whole-exome sequencing, have led to the discovery of a number of conditions that cause mitochondrial dysfunction and subsequent cardiac abnormalities. Nuclear DNA defects are the main cause of mitochondrial disease in children, with disease pathogenesis being related to either abnormalities in specific mitochondrial electron transport chain subunits or in proteins related to subunit or mitochondrial DNA maintenance, mitochondrial protein translation, lipid bilayer structure, or other aspects of mitochondrial function. Currently, symptomatic therapy using standard medications targeting relief of complications is the primary approach to treatment. There are no US Food and Drug Administration-approved therapies for the specific treatment of mitochondrial disease. However, on the basis of recent advances in understanding of the pathophysiology of these complex disorders, various novel approaches are either in clinical trials or in development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.