Abstract
To implement and evaluate deep learning-based methods for the classification of pediatric brain tumors (PBT) in magnetic resonance (MR) data. A subset of the "Children's Brain Tumor Network" dataset was retrospectively used (n = 178 subjects, female = 72, male = 102, NA = 4, age range [0.01, 36.49] years) with tumor types being low-grade astrocytoma (n = 84), ependymoma (n = 32), and medulloblastoma (n = 62). T1w post-contrast (n = 94 subjects), T2w (n = 160 subjects), and apparent diffusion coefficient (ADC: n = 66 subjects) MR sequences were used separately. Two deep learning models were trained on transversal slices showing tumor. Joint fusion was implemented to combine image and age data, and 2 pre-training paradigms were utilized. Model explainability was investigated using gradient-weighted class-activation mapping (Grad-CAM), and the learned feature space was visualized using principal component analysis (PCA). The highest tumor-type classification performance was achieved when using a vision transformer model pre-trained on ImageNet and fine-tuned on ADC images with age fusion (Matthews correlation coefficient [MCC]: 0.77 ± 0.14, Accuracy: 0.87 ± 0.08), followed by models trained on T2w (MCC: 0.58 ± 0.11, Accuracy: 0.73 ± 0.08) and T1w post-contrast (MCC: 0.41 ± 0.11, Accuracy: 0.62 ± 0.08) data. Age fusion marginally improved the model's performance. Both model architectures performed similarly across the experiments, with no differences between the pre-training strategies. Grad-CAMs showed that the models' attention focused on the brain region. PCA of the feature space showed greater separation of the tumor-type clusters when using contrastive pre-training. Classification of PBT on MR images could be accomplished using deep learning, with the top-performing model being trained on ADC data, which radiologists use for the clinical classification of these tumors.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have