Abstract

Car-pedestrian collision fatalities have been reported for a significant number of roadside accidents around the world. In order to reduce the lower extremity injuries in car-pedestrian collisions, it is important to determine the impact forces on the pedestrian and conditions that the car frontal side impacts on the lower extremities of the pedestrian. The Working Group 17 (WG17) of the European Enhanced Vehicle-safety Committee (EEVC) has developed a legform subsystem impactor and procedure for assessing pedestrian collisions and potential injuries. This research describes a methodology for the evaluation of the legform impactor kinematics after a collision utilizing finite element (FE) models of the legform and cars and comparing the simulation results with the ones from a multi-body legform model as well as a 50th percentile male human pedestrian model responses. Two approaches are carried out in the process. First, the collision strike simulations with the FE model using an FE lower legform is considered and validated against the EVVC/WG17 regulation criteria. Secondly, the collision strike simulations with a multi-body legform and an ellipsoidal multi-body car model are conducted to compare the responses from the FE model and the multi-body model. The results from the impact simulations of FE legform and the multi-body legform are also compared with the ones from a full-size pedestrian model at constant speeds. All the models and simulation in this are using the LS-DYNA nonlinear FE code, while the multibody legform, car, and full-sized pedestrian models are developed and evaluated in MADYMO. The results from this study demonstrate the differences between the subsystem legform and the full-size pedestrian responses as well as suitability of various FE and multibody models related to pedestrian impact responses. Different workbenches comparisons with finite model and ellipsoidal models gives more better correlation to this research.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.