Abstract

Point-contact (PC) investigations on the title compound in the normal and superconducting (SC) state (Tc=10,6 K) are presented. The temperature dependence of the SC gap of TmNi2B2C determined from Andreev-reflection (AR) spectra using the standard single-gap approximation (SGA) deviates from the BCS behavior in displaying a maximum at about Tc/2. A refined analysis within the two-gap approximation provides evidence for the presence of a second gap twice as large as the main gap (the first one), while the latter is close to that within the SGA. This way, TmNi2B2C expands the number of nickel borocarbide superconductors which exhibit a clear multiband character. Additionally, for the first time "reentrant" features were found in the AR spectra for some PCs measured in a magnetic field. The PC spectroscopy of the electron-boson interaction in TmNi2B2C in the normal state reveals a pronounced phonon maximum at 9.5meV and a more smeared one around 15 meV, while at higher energies the PC spectra are almost featureless. Additionally, the most intense peak slightly above 3meV observed in the PC spectra of TmNi2B2C is presumably caused by crystalline-electric-field (CEF) excitations. The peak near 1meV detected for some PC spectra is connected with a modification of the CEF probably due to boron or carbon vacancies, allowing to probe the local stoichiometry by PC spectroscopy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.