Abstract

As nanotechnology continues to advance, the study of nanocomposites and their unique properties is at the forefront of research. There are still various blank spots in understanding the behavior of such composite materials, especially regarding plasmonic effects like localized surface plasmon resonance (LSPR) which is essential for developing advanced nanotechnologies. In this work, we explore the structural properties of composite thin films consisting of oxide matrices and gold nanoparticles (Au NPs), which were prepared by radio-frequency magnetron sputtering. Titanium dioxide (TiO2) and tungsten trioxide (WO3) were chosen as the host matrices of the composites. Such composite thin films owing to the presence of Au NPs demonstrate the LSPR phenomenon in the visible region. It is shown, that spectroscopic study, in particular, Raman spectroscopy can reveal peculiar features of structures of such composite systems due to LSPR and photoluminescence (PL) of Au NPs in the visible spectrum. In particular, defect peaks of TiO2 (700-720 cm-1) or WO3 (935 cm-1) in Raman spectra can be clearly observed when the samples are illuminated with a 633 nm excitation laser. Excitation with 532 nm leads to a decrease in the intensity of the defect peak, which totally disappears at 473 nm excitation. Such dependences of the defect peaks on excitation laser wavelength are probably related to the polarization of the matrix's defective regions close to the interface with gold NPs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.