Abstract

In this work the crystal structure and texture of isotropic and anisotropic polycrystalline hexagonal ferrites BaFe12O19 obtained by the method of radiation-thermal sintering (RTS) is studied using X-ray diffraction and X-ray phase analysis. Crude blanks of both isotropic and anisotropic hexaferrites are obtained by the standard method of ceramic technology from the same raw material (Fe2O3 and BaCO3 of the analytical grade brand) and on the same equipment with the only difference being that the anisotropic blanks were pressed in the magnetic field H = 10 kOe. For sintering raw billets, a linear electron accelerator ILU-6 (electron energy Ee = 2.5 MeV) is used (Budker Institute of Nuclear Physics, Siberian Branch, Russian Academy of Sciences). The samples are sintered in air for one hour at 1200, 1250, 1300, and 1350°C. It is shown for the first time that high-quality single-phase isotropic and anisotropic hexaferrites BaFe12O19 can be obtained from raw blanks of a ferritized charge using the RTS technology. The properties of the crystal structure and texture of the obtained objects of the research are described. It is established for the first time that the dependence of the pref.orient.o1 predominant orientation of the crystal texture parameter on the degree of the magnetic texture f in polycrystalline hexagonal barium ferrites of type M is described by the expression pref.orient.o1 = –0.005f + 0.6886.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.