Abstract

A peculiar Rashba effect is found at a point in the Brillouin zone, where the time-reversal symmetry is broken, though this symmetry was believed to be a necessary condition for Rashba splitting. This finding obtained experimentally by photoemission measurements on a Bi/Si(111)-(sqrt(3) x sqrt(3)) surface is fully confirmed by a first-principles theoretical calculation. We found that the peculiar Rashba effect is simply understood by the two-dimensional symmetry of the surface, and that this effect leads to an unconventional nonvortical Rashba spin structure at a point with time-reversal invariance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.