Abstract
The introduction of legumes into rotations can improve nitrogen use efficiency and crop yield; however, its microbial mechanism involved remains unclear. This study aimed to explore the temporal impact of peanut introduction on microorganisms related to nitrogen metabolism in rotation systems. In this study, the dynamics of diazotrophic communities in two crop seasons and wheat yields of two rotation systems: winter wheat - summer maize (WM) and spring peanut → winter wheat - summer maize (PWM) in the North China Plain were investigated. Our results showed that peanut introduction increased wheat yield and biomass by 11.6% (p < 0.05) and 8.9%, respectively. Lower Chao1 and Shannon indexes of the diazotrophic communities were detected in soils that sampling in June compared with those sampling in September, although no difference was found between WM and PWM. Principal co-ordinates analysis (PCoA) showed that rotation system significantly changed the diazotrophic community structures (PERMANOVA; p < 0.05). Compared with WM, the genera of Azotobacter, Skermanella, Azohydromonas, Rhodomicrobium, Azospirillum, Unclassified_f_Opitutaceae, and Unclassified_f_Rhodospirillaceae were significantly enriched (p < 0.05) in PWM. Furthermore, rotation system and sampling time significantly influenced soil properties, which significantly correlated with the top 15 genera in relative abundance. Partial least squares path modeling (PLS-PM) analysis further showed that the diazotrophic community diversity (alpha- and beta-diversity) and soil properties (pH, SOC and TN) significantly affected wheat yield. In conclusion, legume inclusion has the potential to stabilize diazotrophic community structure at the temporal scales and increase subsequent crop yield.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.