Abstract

Purpose: Speed training and short distance sprints have become an essential component of preparation for professional football players. Current trends in speed training have included the application of non-curved, manual treadmills, as they may enhance peak speeds with less biomechanical stress. A lack of data currently exists in regards to the effectiveness of different settings and peak speed response. Therefore, we proposed to compare peak speeds during different settings of non-curved, manual treadmills. It was hypothesized that as resistance/incline increased, peak sprinting speeds would decrease and vice versa. Methods: Fourteen male professional football players (27.14 ± 3.11 yrs., 183.93 ± 8.52 cm, 100.36 ± 15.60 kg) sprinted at peak speeds during four different incline/resistance bouts. Paired samples T-tests examined differences between bouts, and significance was set at p ≤ 0.008. Results: A significant difference (p < 0.001) existed for peak speeds between each incline/resistance bout (i.e. INC15R8, INC15R5, INC20R3, INC20R1). Conclusions: The observed data differences existed between all bouts, indicating that as resistance and/or incline increased, peak speed decreased. This also indicated that as resistance and/or incline decreased, peak speed increased during sprint bouts in professional football players.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.