Abstract

This paper studies the pathways of peaking CO2 emissions of Dezhou city in China, by employing a bottom-up sector analysis model and considering future economic growth, the adjustment of the industrial structure, and the trend of energy intensity. Two scenarios (a business-as-usual (BAU) scenario and a CO2 mitigation scenario (CMS)) are set up. The results show that in the BAU scenario, the final energy consumption will peak at 25.93 million tons of coal equivalent (Mtce) (16% growth versus 2014) in 2030. In the CMS scenario, the final energy will peak in 2020 at 23.47 Mtce (9% lower versus peak in the BAU scenario). The total primary energy consumption will increase by 12% (BAU scenario) and decrease by 3% (CMS scenario) in 2030, respectively, compared to that in 2014. In the BAU scenario, CO2 emission will peak in 2025 at 70 million tons of carbon dioxide (MtCO2), and subsequently decrease gradually in 2030. In the CMS scenario, the peak has occurred in 2014, and 60 MtCO2 will be emitted in 2030. Active policies including restructuring the economy, improving energy efficiency, capping coal consumption, and using more lowcarbon/carbon free fuel are recommended in Dezhou city peaked CO2 emission as early as possible.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call