Abstract

Methylcellulose is commonly used in meat analogues for binding ingredients. In this study, we compared the binding properties of a methylcellulose hydrogel (5% w/w) to a novel, clean-label binder based on a mixture of pea protein and sugar beet pectin (r = 2:1, 22.5% w/w, pH 6.0) with and without laccase addition in a burger type meat analogue. It was shown that the pea protein–pectin binder glued vegetable protein particles and fat mimic particles together prior to cooking and frying, thereby improving forming of the mass into burger patties. Furthermore, sensory analysis revealed that the cohesiveness of the fried burger patties was better when the protein–pectin binder was used. However, the used binder system did not affect the hardness of the burger patties indicating that the binders rather affected the coherence of the structural elements. Burgers with solid fat particles were rated better in terms of appearance as compared to emulsified fat particles, since the former were not visible. This study is useful to better understand meat analogue product design for a higher acceptance among consumers.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.