Abstract

Genomic alterations are crucial for the development and progression of human cancers. Copy-number gains found in genes encoding metabolic enzymes may induce triple-negative breast cancer (TNBC) adaptation. However, little is known about how metabolic enzymes regulate TNBC metastasis. Using our previously constructed multiomic profiling of a TNBC cohort, we identified decaprenyl diphosphate synthase subunit 1 (PDSS1) as an essential gene for TNBC metastasis. PDSS1 expression was significantly upregulated in TNBC tissues compared with adjacent normal tissues and was positively associated with poor survival among patients with TNBC. PDSS1 knockdown inhibited TNBC cell migration, invasion, and distant metastasis. Mechanistically, PDSS1, but not a catalytically inactive mutant, positively regulated the cellular level of coenzyme Q10 (CoQ10) and intracellular calcium levels, thereby inducing CAMK2A phosphorylation, which is essential for STAT3 phosphorylation in the cytoplasm. Phosphorylated STAT3 entered the nucleus, promoting oncogenic STAT3 signaling and TNBC metastasis. STAT3 phosphorylation inhibitors (e.g., Stattic) effectively blocked PDSS1-induced cell migration and invasion in vitro and tumor metastasis in vivo. Taken together, our study highlights the importance of targeting the previously uncharacterized PDSS1/CAMK2A/STAT3 oncogenic signaling axis, expanding the repertoire of precision medicine in TNBC. SIGNIFICANCE: A novel metabolic gene PDSS1 is highly expressed in triple-negative breast cancer tissues and contributes to metastasis, serving as a potential therapeutic target for combating metastatic disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call