Abstract
A general, fast, and effective approach is developed for numerical calculation of kinetic plasma linear dispersion relations. The plasma dispersion function is approximated by J-pole expansion. Subsequently, the dispersion relation is transformed to a standard matrix eigenvalue problem of an equivalent linear system. Numerical solutions for the least damped or fastest growing modes using an 8-pole expansion are generally accurate; more strongly damped modes are less accurate, but are less likely to be of physical interest. In contrast to conventional approaches, such as Newton's iterative method, this approach can give either all the solutions in the system or a few solutions around the initial guess. It is also free from convergence problems. The approach is demonstrated for electrostatic dispersion equations with one-dimensional and two-dimensional wavevectors, and for electromagnetic kinetic magnetized plasma dispersion relation for bi-Maxwellian distribution with relative parallel velocity flows between species.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.