Abstract

The molecular mechanisms that control reproductive aging and menopausal age in females are poorly understood. Here, we provide genetic evidence that 3-phosphoinositide-dependent protein kinase-1 (PDK1) signaling in oocytes preserves reproductive lifespan by maintaining the survival of ovarian primordial follicles. In mice lacking the PDK1-encoding gene Pdk1 in oocytes, the majority of primordial follicles are depleted around the onset of sexual maturity, causing premature ovarian failure (POF) during early adulthood. We further showed that suppressed PDK1-Akt-p70 S6 kinase 1 (S6K1)-ribosomal protein S6 (rpS6) signaling in oocytes appears to be responsible for the loss of primordial follicles, and mice lacking the Rps6 gene in oocytes show POF similar to that in Pdk1-deficient mice. In combination with our earlier finding that phosphatase and tensin homolog deleted on chromosome 10 (PTEN) in oocytes suppresses follicular activation, we have now pinpointed the molecular network involving phosphatidylinositol 3 kinase (PI3K)/PTEN-PDK1 signaling in oocytes that controls the survival, loss and activation of primordial follicles, which together determine reproductive aging and the length of reproductive life in females. Underactivation or overactivation of this signaling pathway in oocytes is shown to cause pathological conditions in the ovary, including POF and infertility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.