Abstract

Increased expression of PDGF receptor-β (PDGFRβ) has been shown in renal proximal tubules in mice with diabetes. The core molecular network used by high glucose to induce proximal tubular epithelial cell collagen I (α2) expression is poorly understood. We hypothesized that activation of PDGFRβ by high glucose increases collagen I (α2) production via the Akt/mTORC1 signaling pathway in proximal tubular epithelial cells. Using biochemical and molecular biological techniques, we investigated this hypothesis. We show that high glucose increases activating phosphorylation of the PDGFRβ, resulting in phosphorylation of phosphatidylinositol 3-kinase. A specific inhibitor, JNJ-10198409, and small interfering RNAs targeting PDGFRβ blocked this phosphorylation without having any effect on MEK/Erk1/2 activation. We also found that PDGFRβ regulates high glucose-induced Akt activation, its targets tuberin and PRAS40 phosphorylation, and finally, mTORC1 activation. Furthermore, inhibition of PDGFRβ suppressed high glucose-induced expression of collagen I (α2) in proximal tubular cells. Importantly, expression of constitutively active Akt or mTORC1 reversed these processes. As a mechanism, we found that JNJ and PDGFRβ knockdown inhibited high glucose-stimulated Hif1α expression. Furthermore, overexpression of Hif1α restored expression of collagen I (α2) that was inhibited by PDGFRβ knockdown in high glucose-stimulated cells. Finally, we show increased phosphorylation of PDGFRβ and its association with Akt/mTORC1 activation, Hif1α expression, and elevated collagen I (α2) levels in the renal cortex of mice with diabetes. Our results identify PDGFRβ as a driver in activating Akt/mTORC1 nexus for high glucose-mediated expression of collagen I (α2) in proximal tubular epithelial cells, which contributes to tubulointerstitial fibrosis in diabetic nephropathy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.