Abstract

Oral submucous fibrosis (OSF) is a chronic oral mucosal disease. The pathological changes of OSF include epithelial damage and subepithelial matrix fibrosis. This study aimed to reveal the epithelial injury mechanism of OSF. A histopathological method was used to analyze oral mucosal tissue from OSF patients and OSF rats. The expression of PDE12 in the oral epithelium was analyzed by immunohistochemistry. The epithelial–mesenchymal transition (EMT) and tight junction proteins in arecoline-treated HOKs were explored by western blotting. Epithelial leakage was assessed by transepithelial electrical resistance and lucifer yellow permeability. The expression of PDE12 and the mitochondrial morphology, mitochondrial permeability transition pore opening, mitochondrial membrane potential, and mitochondrial reactive oxygen species (mtROS) were evaluated in arecoline-induced HOKs. Oxidative phosphorylation (OXPHOS) complexes and ATP content were also explored in HOKs. The results showed significant overexpression of PDE12 in oral mucosal tissue from OSF patients and rats. PDE12 was also overexpressed and aggregated in mitochondria in arecoline-induced HOKs, resulting in dysfunction of OXPHOS and impaired mitochondrial function. An EMT, disruption of tight junctions with epithelial leakage, and extracellular matrix remodeling were also observed. PDE12 overexpression induced by PDE12 plasmid transfection enhanced the mtROS level and interfered with occludin protein localization in HOKs. Interestingly, knockdown of PDE12 clearly ameliorated arecoline-induced mitochondrial dysfunction and epithelial barrier dysfunction in HOKs. Therefore, we concluded that overexpression of PDE12 impaired mitochondrial OXPHOS and mitochondrial function and subsequently impaired epithelial barrier function, ultimately leading to OSF. We suggest that PDE12 may be a new potential target against OSF.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.