Abstract

Well-defined palladium–gold nanoparticles (PdAuNPs) with randomly alloyed structures and broadly tunable compositions were studied in catalytic nitrite (NO2–) reduction. The catalysts were synthesized using a microwave-assisted polyol coreduction method. PdxAu100–xNPs with systematically varied compositions (x = 18–83) were supported on amorphous silica (SiO2) and studied as model catalysts for aqueous NO2– reduction in a batch reactor, using H2 as the electron donor. The reactions followed pseudo-first-order kinetics for ≥80% NO2– conversion. The PdxAu100–xNP-SiO2 catalysts showed a volcano-like correlation between NO2– reduction activity and x; the highest activity was observed for Pd53Au47, with an associated first-order rate constant of 5.12 L min–1 gmetal–1. Alloy NPs with greater proportions of Au were found to reduce the loss in catalytic activity due to sulfide fouling. Density functional theory calculations indicate that this is because Au weakens sulfur binding at PdAuNP surfaces due to atomic e...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call