Abstract

ABSTRACTThis work focuses on interstitial solid solutions of hydrogen in the face-centred cubic (fcc) host lattice of palladium and nickel, using a first-principles based approach. Cluster Variation Method (CVM) and Monte Carlo simulation algorithms were especially designed, allowing a coupled use of both techniques, to study hydrogen–vacancy interactions inside an fcc metallic host lattice. First-principles calculations provided the H–Vac interaction energies by structure inversion method. The phase diagrams and thermodynamic properties were computed using only theoretical inputs. The mechanisms leading to the formation of the miscibility gaps observed for both Pd–H and Ni–H systems and the hydrogen ordering on palladium interstitial lattice were reproduced without any empirical term.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call