Abstract

A methyl group can have a profound impact on the pharmacological properties of organic molecules. Hence, developing methylation methods and methylating reagents is essential in medicinal chemistry. We report a palladium-catalyzed dimethylation reaction of ortho-substituted iodoarenes using dimethyl carbonate as a methyl source. In the presence of K2CO3 as a base, iodoarenes are dimethylated at the ipso- and meta-positions of the iodo group, which represents a novel strategy for meta-C-H methylation. With KOAc as the base, subsequent oxidative C(sp3)-H/C(sp3)-H coupling occurs; in this case, the overall transformation achieves triple C-H activation to form three new C-C bonds. These reactions allow expedient access to 2,6-dimethylated phenols, 2,3-dihydrobenzofurans, and indanes, which are ubiquitous structural motifs and essential synthetic intermediates of biologically and pharmacologically active compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.