Abstract

Palladium–bismuth nanomaterials are used in various chemical applications such detectors, electrodes, and catalysts. Pd-Bi catalysts are attracting widespread interest because these catalysts enable the production of valuable products quickly and efficiently, and are environmentally friendly. However, the composition of the catalyst can have a significant impact on its catalytic performance. In this work, we identified a correlation between the composition of the catalyst and its efficiency in converting glucose into sodium gluconate. It was found that the conversion decreases with increasing bismuth content. The most active catalyst was the 0.35Bi:Pd sample with a lower bismuth content (glucose conversion of 57%). TEM, SEM, EXAFS, and XANES methods were used to describe, in detail, the surface properties of the xBi:Pd/Al2O3 catalyst samples. The increase in particle size with increasing bismuth content, observed in the TEM micrographs, was associated with the low melting point of bismuth (271 °C). The SEM method showed that palladium and bismuth particles were uniformly distributed over the surface of the support in close proximity to each other, which allowed us to conclude that an alloy of non-stoichiometric composition was formed. The EXAFS and XANES methods established that bismuth was located on the surface of the nanoparticle predominantly in an oxidized state.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.