Abstract

Peptide detectability is defined as the probability of identifying a peptide from a mixture of standard samples, which is a key step in protein identification and analysis. Exploring effective methods for predicting peptide detectability is helpful for disease treatment and clinical research. However, most existing computational methods for predicting peptide detectability rely on a single information. With the increasing complexity of feature representation, it is necessary to explore the influence of multivariate information on peptide detectability. Thus, we propose an ensemble deep learning method, PD-BertEDL. Bidirectional encoder representations from transformers (BERT) is introduced to capture the context information of peptides. Context information, sequence information, and physicochemical information of peptides were combined to construct the multivariate feature space of peptides. We use different deep learning methods to capture the high-quality features of different categories of peptides information and use the average fusion strategy to integrate three model prediction results to solve the heterogeneity problem and to enhance the robustness and adaptability of the model. The experimental results show that PD-BertEDL is superior to the existing prediction methods, which can effectively predict peptide detectability and provide strong support for protein identification and quantitative analysis, as well as disease treatment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.